Roger Access Control System

Instrukcja instalacji zestawów MC16-PAC-3-KIT i MC16-PAC-4-KIT

Oprogramowanie firmowe kontrolera: 1.6.2 i wyższe

Wersia produktu: 2.0

Wersja dokumentu: Rev. C

CE

Niniejszy dokument zawiera minimum informacji wymaganych do skonfigurowania, podłączenia i zamontowania zestawu. Pełny opis funkcjonalności oraz parametrów konfiguracyjnych elementów zestawu jest dostępny w instrukcjach obsługi dostępnych na stronie www.rc

WSTEP

Zestaw MC16-PAC-3-KIT jest przeznaczony do obsługi trzech przejść a zestaw MC16-PAC-4-KIT czterech przejść w ramach systemu kontroli dostępu RACS 5. Przejścia mogą być kontrolowane jedno lub dwustronnie z wykorzystaniem czytników serii MCT (RS485). Zestaw zawiera odpowiednio kontroler MC16-PAC-3 lub MC16-PAC-4 i ekspander MCX4D oraz metalową obudowę ME-16 z zasilaczem PS4D. Obudowa jest przystosowana do instalacji akumulatora 17Ah w celu zapewnienia zasilania awaryjnego. Wszystkie elementy kontrolowanego przejścia w tym czytniki oraz zamki drzwi można zasilić z zestawu.

KONFIGURACJA Z POZIOMU ROGERVDM

Konfiguracja niskopoziomowa za pomocą programu RogerVDM pozwala zdefiniować podstawowe parametry urządzeń i dotyczy przede wszystkim kontrolera MC16. Dodatkowo w przypadku czytników serii MCT konieczne jest ustawienie im indywidualnych adresów na obsługiwanej magistrali zgodnie z ich instrukcjami instalacji

Procedura programowania MC16 z poziomu programu RogerVDM:

- Podłącz kontroler do sieci Ethernet ustawiając adres IP komputera z programem RogerVDM w tej samej podsieci co kontroler z domyślnym 1. adresem 192.168.0.213
- Uruchom program RogerVDM, wybierz urządzenie MC16 v1.x, najnowszą wersję firmware i kanał komunikacyjny Ethernet.
- Wybierz z listy lub wprowadź ręcznie adres IP kontrolera, wprowadź klucz 3. komunikacyjny 1234 i nawiąż połączenie z kontrolerem.
- W menu górnym wybierz Narzędzia, a następnie polecenie Ustaw klucz komunikacyjny by ustawić własne hasło dla kontrolera MC16. 4
- W polu *Adres IP* zdefiniuj własny adres IP kontrolera. Opcjonalnie wprowadź komentarze dla kontrolera i jego obiektów w celu ułatwienia ich identyfikacji w ramach dalszej konfiguracji systemu.
- Opcjonalnie utwórz kopię zapasową ustawień poleceniem Zapisz do pliku... 8 Prześlij ustawienie do kontrolera wybierając Wyślij do urządzenia i rozłącz się z nim wybierając w menu górnym Urządzenie i następnie Rozłącz.

KONFIGURACJA Z POZIOMU VISO

Konfiguracja wysokopoziomowa za pomocą programu VISO umożliwia zdefiniowanie logiki działania kontrolera. Więcej informacji na ten temat podano w instrukcji obsługi kontrolera oraz nocie aplikacyjnej AN006.

RESET PAMIĘCI

Reset pamięci kontrolera kasuje wszystkie dotychczasowe nastawy konfiguracyjne i ustawia pusty klucz komunikacyjny oraz domyślny adres IP 192 168 0 213

Procedura resetu pamieci MC16:

- Odłącz zasilanie kontrolera. 1.
- Zewrzvi linie CLK i IN4.
- 3. Podłącz zasilanie kontrolera, wszystkie diody LED zaczną pulsować i odczekaj co najmniej 6s.
- Rozewrzyj linie CLK i IN4, diody LED przestaną pulsować i zaświeci się LED2.
- 5 Odczekaj około 1,5 min do momentu aż zaczną pulsować LED5, LED6, LED7 i LED8.
- Zrestartuj kontroler (wyłącz/włącz zasilanie). 6
- Uruchom program RogerVDM i wykonaj konfigurację niskopoziomową. 7

AKTUALIZACJA OPROGRAMOWANIA

Nowe oprogramowanie firmowe można wgrać do kontrolera MC16 za pomocą programu RogerVDM. Plik z aktualnym oprogramowaniem firmowym dostępny iest na stronie www.roger.pl

Procedura aktualizacji oprogramowania MC16:

- Nawiąż połączenie z kontrolerem za pomocą programu RogerVDM. 1.
- Zachowaj kopię zapasową ustawień poleceniem Zapisz do pliku...
- W menu górnym wybierz Narzędzia, a następnie Aktualizacja firmware. 3.
- 4. Wskaż lokalizację pliku firmware i wybierz Prześlij.
- 5. Po wgraniu firmware odczekaj aż LED8 zacznie pulsować. 6
- Wykonaj lub przywróć konfigurację niskopoziomową w ramach programu RogerVDM.

Uwaga: W czasie procesu wgrywania oprogramowania należy zagwarantować ciągłe i stabilne zasilanie urządzenia. Awaria w czasie aktualizacji oprogramowania może skutkować koniecznością naprawy urządzenia w serwisie Roger.

ZASILANIE

Zasilanie zestawu zapewnia zasilacz PS4D 13,8VDC/5,4A. W zestawie przewidziano miejsce na standardowy akumulator o pojemności 17Ah, który podłącza się do zacisków BAT+ i BAT- ekspandera MCX4D.

Instalację może wykonywać tylko wykwalifikowana osoba posiadająca odpowiednie zezwolenia i uprawnienia do przyłączania i ingerencji w sieć 230VAC oraz sieci niskonapięciowe.
Przed przystąpieniem do instalacji należy upewnić się, że napięcie w obwodzie zasilającym 230VAC jest odłączone. Wszelkie prace serwisowe wewnątrz obudowy należy wykonywać przy odłączonym zasilaniu 230VAC.
Niedopuszczalne jest użytkowanie zestawu bez poprawnie wykonanego i sprawnego technicznie obwodu ochrony przeciwporażeniowej PE.

OCHRONA ANTYSABOTAŻOWA

Obudowa zestawu jest wyposażona w czujnik otwarcia drzwiczek. Czujnik można podłączyć do jednej z linii wejściowych kontrolera (np. IN8) i zacisku GND. W ramach późniejszej konfiguracji wysokopoziomowej, wybranej linii wejściowej można przypisać funkcję ochrony antysabotażowej.

DODATKI

Tabela 1. Opis zacisków kontrolera MC16

Nazwa	Opis
BAT+, BAT-	Nie używane w zestawie
AC, AC	Nie używane w zestawie
AUX-, AUX+	Zasilanie wejściowe 12VDC
TML-, TML+	Nie używane w zestawie
IN1-IN8	Linie wejściowe
GND	Potencjał odniesienia (masa)
OUT1-OUT6	Tranzystorowe linie wyjściowe 15VDC/150mA
A1,B1	Magistrala RS485
CLK, DTA	Nie używane w zestawie
A2,B2	Nie używane
NO1, COM1, NC1	Przekaźnik (REL1) 30V/1,5A DC/AC
NO2, COM2, NC2	Przekaźnik (REL2) 30V/1,5A DC/AC

Tabela 2. Opis zacisków ekspandera MCX4D Nazwa Opis

BAT+, BAT-	Zaciski do podłączenia akumulatora
VIN+, VIN-	Zasilanie wejściowe 13,8VDC
AUX+, AUX-	Zasilanie wyjściowe 13,8VDC/0,2A (do ogólnego
	przeznaczenia)
VOUT+, VOUT-	Zasilanie wyjściowe 13,8VDC/0,2A (do kontrolera)
A, B	Magistrala RS485 (do kontrolera)
Ax, Bx	Magistrala RS485 (do czytników)
TMLx+, TMLx-	Zasilanie wyjściowe 13,8VDC/0,2A (do czytników)
VDRx+, VDRx-	Zasilanie wyjściowe 13,8VDC/1,0A (do zamka drzwi)
LCKx	Tranzystorowa linia wyjściowa 15VDC/1A (zamek drzwi)
BELLx	Tranzystorowa linia wyjściowa 15VDC/1A (sygnalizator)
DCx	Linia wejściowa (czujnik otwarcia drzwi)
DRx	Linie wejściowa (przycisk wyjścia)

Tabela 3. Wskaźniki LED kontrolera MC16		
Nazwa	Opis	
LED1	Tryb normalny	
LED2	Świeci: Tryb serwisowy (konfiguracja niskopoziomowa) Pulsowanie: Błąd pamięci RAM lub Flash SPI	
LED3	Świeci: Błąd konfiguracji wysokopoziomowej	
	Pulsowanie: Błąd konfiguracji niskopoziomowej	
LED4	Brak/błąd karty pamięci	
LED5	Błąd logu zdarzeń	
LED6	Błąd licencji	
LED7	Nie używany	
LED8	Pulsowanie: Prawidłowa praca kontrolera	

Tabela 4. Dane techniczne				
Napięcie zasilania	230VAC, 50/60Hz (-15%÷+10%)			
Zasilacz	PS4D 13,8VDC/5,4A			
Zabezpieczenie przeciw- zwarciowe i przeciążeniowe	Tak			
Obudowa	Blacha DC01 0,7mm, kolor szary antracyt (RAL7016)			
Ochrona antysabotażowa (TAMPER)	Czujnik NO/NC; 50VDC/50mA			
Odległości	Pomiędzy zestawem i czytnikiem: do 150m			
Stopień ochrony	IP20			
Klasa środowiskowa (wg EN 50133-1)	Klasa I, warunki wewnętrzne, temp. +5°C do +40°C, wilgotność względna: 1095% (bez kondensacji)			
Wymiary W x S x G	305 x 325 x 100 mm			
Waga	3,2 kg			
Certyfikaty	CE			

Rys. 2 Typowa obsługa przejść z czytnikami serii MCT

Uwagi:

- Wszystkie czytniki MCT podłączone do kontrolera MC16 poprzez ekspander MCX4D muszą mieć unikalne adresy na magistrali RS485 w zakresie ID=101-115 (przyjmując że ekspander MCX4D działa z adresem domyślnym ID=100).
- W przypadku przejścia jednostronnie kontrolowanego, do kontrolera podłącza się jeden czytnik w ramach danego przejścia.
- Na schematach przyjęto obsługę przejść z elektrozaczepami. W przypadku zwór elektromagnetycznych należy zmienić polaryzację wyjść LCKx w ramach konfiguracji ekspandera MCX4D za pomocą programu RogerVDM.
- Na schematach przewidziano obsługę przycisku wyjścia. W przypadku przejścia dwustronnie kontrolowanego przycisk może służyć do awaryjnego otwierania przejścia.
- Jeżeli w zestawie zainstalowany jest akumulator 17Ah to zaleca się ustawienie prądu ładowania na poziomie 600mA za pomocą zworki na ekspanderze MCX4D.

 Jeżeli kontroler MC16 jest zasilany z ekspandera MCX4D czyli tak jak jest to standardowo w zestawach MC16-PAC-3-KIT i MC16-PAC-4-KIT to nie wskazane jest korzystanie z wyjścia TML kontrolera.

2021-03-18

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji.

Kontakt: Roger Sp. z o. o. sp. k. 82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132 Faks: +48 55 272 0133 Pomoc tech.: +48 55 267 0126 Pomoc tech. (GSM): +48 664 294 087 E-mail: pomoc.techniczna@roger.pl Web: www.roger.pl

